Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4204, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452046

RESUMO

Chemokines are key regulators of leukocyte trafficking and attractive targets for anti-inflammatory therapy. Evasins are chemokine-binding proteins from tick saliva, whose application as anti-inflammatory therapeutics will require manipulation of their chemokine target selectivity. Here we describe subclass A3 evasins, which are unique to the tick genus Amblyomma and distinguished from "classical" class A1 evasins by an additional disulfide bond near the chemokine recognition interface. The A3 evasin EVA-AAM1001 (EVA-A) bound to CC chemokines and inhibited their receptor activation. Unlike A1 evasins, EVA-A was not highly dependent on N- and C-terminal regions to differentiate chemokine targets. Structures of chemokine-bound EVA-A revealed a deep hydrophobic pocket, unique to A3 evasins, that interacts with the residue immediately following the CC motif of the chemokine. Mutations to this pocket altered the chemokine selectivity of EVA-A. Thus, class A3 evasins provide a suitable platform for engineering proteins with applications in research, diagnosis or anti-inflammatory therapy.


Assuntos
Carrapatos , Animais , Carrapatos/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Quimiocinas/metabolismo , Quimiocinas CC/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
2.
Chembiochem ; 24(14): e202300162, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37211532

RESUMO

Isocitrate lyase (ICL) isoform 2 is an essential enzyme for some clinical Mycobacterium tuberculosis (Mtb) strains during infection. In the laboratory Mtb strain H37Rv, the icl2 gene encodes two distinct gene products - Rv1915 and Rv1916 - due to a frameshift mutation. This study aims to characterise these two gene products to understand their structure and function. While we were unable to produce Rv1915 recombinantly, soluble Rv1916 was obtained with sufficient yield for characterisation. Kinetic studies using UV-visible spectrophotometry and 1 H-NMR spectroscopy showed that recombinant Rv1916 does not possess isocitrate lyase activity, while waterLOGSY binding experiments demonstrated that it could bind acetyl-CoA. Finally, X-ray crystallography revealed structural similarities between Rv1916 and the C-terminal domain of ICL2. Considering the probable differences between full-length ICL2 and the gene products Rv1915 and Rv1916, care must be taken when using Mtb H37Rv as a model organism to study central carbon metabolism.


Assuntos
Mycobacterium tuberculosis , Acetilcoenzima A , Isocitrato Liase/química , Isocitrato Liase/genética , Isocitrato Liase/metabolismo , Cinética , Proteínas de Bactérias/metabolismo
4.
J Biol Chem ; 298(10): 102382, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35973511

RESUMO

Class A tick evasins are natural chemokine-binding proteins that block the signaling of multiple chemokines from the CC subfamily through their cognate receptors, thus suppressing leukocyte recruitment and inflammation. Development of tick evasins as chemokine-targeted anti-inflammatory therapeutics requires an understanding of the factors controlling their chemokine recognition and selectivity. To investigate the role of the evasin N-terminal region for chemokine recognition, we prepared chimeric evasins by interchanging the N-terminal regions of four class A evasins, including a newly identified evasin, EVA-RPU02. We show through chemokine binding analysis of the parental and chimeric evasins that the N-terminal region is critical for chemokine binding affinity and selectivity. Notably, we found some chimeras were unable to bind certain cognate chemokine ligands of both parental evasins. Moreover, unlike any natural evasins characterized to date, some chimeras exhibited specific binding to a single chemokine. These results indicate that the evasin N terminus interacts cooperatively with the "body" of the evasin to enable optimum chemokine recognition. Furthermore, the altered chemokine selectivity of the chimeras validates the approach of engineering the N termini of evasins to yield unique chemokine recognition profiles.


Assuntos
Proteínas de Artrópodes , Quimiocinas , Receptores CXCR , Rhipicephalus , Proteínas e Peptídeos Salivares , Animais , Proteínas de Artrópodes/metabolismo , Quimiocinas/metabolismo , Ligação Proteica , Receptores CXCR/metabolismo , Rhipicephalus/metabolismo , Transdução de Sinais , Proteínas e Peptídeos Salivares/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217625

RESUMO

As natural chemokine inhibitors, evasin proteins produced in tick saliva are potential therapeutic agents for numerous inflammatory diseases. Engineering evasins to block the desired chemokines and avoid off-target side effects requires structural understanding of their target selectivity. Structures of the class A evasin EVA-P974 bound to human CC chemokine ligands 7 and 17 (CCL7 and CCL17) and to a CCL8-CCL7 chimera reveal that the specificity of class A evasins for chemokines of the CC subfamily is defined by conserved, rigid backbone-backbone interactions, whereas the preference for a subset of CC chemokines is controlled by side-chain interactions at four hotspots in flexible structural elements. Hotspot mutations alter target preference, enabling inhibition of selected chemokines. The structure of an engineered EVA-P974 bound to CCL2 reveals an underlying molecular mechanism of EVA-P974 target preference. These results provide a structure-based framework for engineering evasins as targeted antiinflammatory therapeutics.


Assuntos
Proteínas de Artrópodes/química , Quimiocinas/metabolismo , Inflamação/metabolismo , Engenharia de Proteínas , Carrapatos/metabolismo , Animais , Proteínas de Artrópodes/metabolismo , Ligação Proteica , Conformação Proteica , Receptores de Quimiocinas/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(23): 12657-12664, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461364

RESUMO

Blood-feeding arthropods produce antiinflammatory salivary proteins called evasins that function through inhibition of chemokine-receptor signaling in the host. Herein, we show that the evasin ACA-01 from the Amblyomma cajennense tick can be posttranslationally sulfated at two tyrosine residues, albeit as a mixture of sulfated variants. Homogenously sulfated variants of the proteins were efficiently assembled via a semisynthetic native chemical ligation strategy. Sulfation significantly improved the binding affinity of ACA-01 for a range of proinflammatory chemokines and enhanced the ability of ACA-01 to inhibit chemokine signaling through cognate receptors. Comparisons of evasin sequences and structural data suggest that tyrosine sulfation serves as a receptor mimetic strategy for recognizing and suppressing the proinflammatory activity of a wide variety of mammalian chemokines. As such, the incorporation of this posttranslational modification (PTM) or mimics thereof into evasins may provide a strategy to optimize tick salivary proteins for antiinflammatory applications.


Assuntos
Ácaros e Carrapatos/metabolismo , Proteínas de Artrópodes/metabolismo , Quimiocinas/antagonistas & inibidores , Processamento de Proteína Pós-Traducional , Saliva/metabolismo , Animais , Proteínas de Artrópodes/química , Quimiocinas/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Sulfatos/metabolismo , Tirosina/metabolismo
8.
J Am Chem Soc ; 142(20): 9141-9146, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32330017

RESUMO

Targeting chemokine signaling is an attractive avenue for the treatment of inflammatory disorders. Tyrosine sulfation is an important post-translational modification (PTM) that enhances chemokine-receptor binding and is also utilized by a number of pathogenic organisms to improve the binding affinity of immune-suppressive chemokine binding proteins (CKBPs). Here we report the display selection of tyrosine-sulfated cyclic peptides using a reprogrammed genetic code to discover high-affinity ligands for the chemokine CCL11 (eotaxin-1). The selected cyclic sulfopeptides possess high affinity for the target chemokine (as well as one or more of the related family members CCL2, CCL7 and CCL24) and inhibit CCL11 activation of CC chemokine receptor 3 (CCR3). This work demonstrates the utility of exploiting native PTMs as binding motifs for the generation of new leads for medicinal chemistry.


Assuntos
Quimiocina CCL11/antagonistas & inibidores , Descoberta de Drogas , Peptídeos/farmacologia , RNA Mensageiro/efeitos dos fármacos , Quimiocina CCL11/genética , Quimiocina CCL11/metabolismo , Humanos , Estrutura Molecular , Peptídeos/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Trends Biochem Sci ; 45(2): 108-122, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31679840

RESUMO

Ticks are hematophagous arachnids that parasitize mammals and other hosts, feeding on their blood. Ticks secrete numerous salivary factors that enhance host blood flow or suppress the host inflammatory response. The recruitment of leukocytes, a hallmark of inflammation, is regulated by chemokines, which activate chemokine receptors on the leukocytes. Ticks target this process by secreting glycoproteins called Evasins, which bind to chemokines and prevent leukocyte recruitment. This review describes the recent discovery of numerous Evasins produced by ticks, their classification into two structural and functional classes, and the efficacy of Evasins in animal models of inflammatory diseases. The review also proposes a standard nomenclature system for Evasins and discusses the potential of repurposing or engineering Evasins as therapeutic anti-inflammatory agents.


Assuntos
Quimiocinas/antagonistas & inibidores , Proteínas de Insetos/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Carrapatos/metabolismo , Animais , Leucócitos/metabolismo , Receptores de Quimiocinas/metabolismo , Terminologia como Assunto
10.
Protein Sci ; 29(2): 420-432, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31605402

RESUMO

In response to infection or injury, the body mounts an inflammatory immune response in order to neutralize pathogens and promote tissue repair. The key effector cells for these responses are the leukocytes (white blood cells), which are specifically recruited to the site of injury. However, dysregulation of the inflammatory response, characterized by the excessive migration of leukocytes to the affected tissues, can also lead to chronic inflammatory diseases. Leukocyte recruitment is regulated by inflammatory mediators, including an important family of small secreted chemokines and their corresponding G protein-coupled receptors expressed in leukocytes. Unsurprisingly, due to their central role in the leukocyte inflammatory response, chemokines and their receptors have been intensely investigated and represent attractive drug targets. Nonetheless, the full therapeutic potential of chemokine receptors has not been realized, largely due to the complexities in the chemokine system. The determination of chemokine-receptor structures in recent years has dramatically shaped our understanding of the molecular mechanisms that underpin chemokine signaling. In this review, we summarize the contemporary structural view of chemokine-receptor recognition, and describe the various binding modes of peptide and small-molecule ligands to chemokine receptors. We also provide some perspectives on the implications of these data for future research and therapeutic development. IMPORTANCE STATEMENT: Given their central role in the leukocyte inflammatory response, chemokines and their receptors are considered as important regulators of physiology and viable therapeutic targets. In this review, we provide a summary of the current understanding of chemokine: chemokine-receptor interactions that have been gained from structural studies, as well as their implications for future drug discovery efforts.


Assuntos
Quimiocinas/metabolismo , Inflamação/metabolismo , Leucócitos/metabolismo , Receptores de Quimiocinas/metabolismo , Animais , Quimiocinas/química , Humanos , Leucócitos/química , Conformação Proteica , Receptores de Quimiocinas/química
11.
Nat Commun ; 10(1): 4639, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604954

RESUMO

Isocitrate lyase is important for lipid utilisation by Mycobacterium tuberculosis but its ICL2 isoform is poorly understood. Here we report that binding of the lipid metabolites acetyl-CoA or propionyl-CoA to ICL2 induces a striking structural rearrangement, substantially increasing isocitrate lyase and methylisocitrate lyase activities. Thus, ICL2 plays a pivotal role regulating carbon flux between the tricarboxylic acid (TCA) cycle, glyoxylate shunt and methylcitrate cycle at high lipid concentrations, a mechanism essential for bacterial growth and virulence.


Assuntos
Acetilcoenzima A/metabolismo , Isocitrato Liase/metabolismo , Mycobacterium tuberculosis/enzimologia , Acetilcoenzima A/fisiologia , Acil Coenzima A/metabolismo , Carbono/metabolismo , Ciclo do Ácido Cítrico , Cristalografia por Raios X , Isocitrato Liase/química , Metabolismo dos Lipídeos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Domínios Proteicos
12.
Medicines (Basel) ; 6(4)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547083

RESUMO

Background: Pogostemon benghalensis leaves have traditionally been utilized for relieving body aches, headaches and fever. Based on its uses, the present study was designed to investigate the antinociceptive, antipyretic and anti-edematogenic activities from P. benghalensis leaves' methanol extract (PBME) in Wister rats. Methods: The thermal (hot plate) and chemical (acetic acid-induced writhing and formalin test) models for antinociceptive effects, and the Brewer's yeast induced hyperthermia test for antipyretic action and rat paw edema by carrageenan for anti-edematogenic activity, were applied for PBME at different dose levels. The acute toxicity of PBME through the oral route was performed to determine the lethal dose. Results: PBME significantly and dose-dependently reduced pyrexia and diminished edema volume, which depicted its antipyretic and anti-edematogenic effects respectively. The inhibition of writhing reflex, increased reaction latency and reduced frequency of licking indicated that PBME has significant dose-dependent antinociceptive activity. P. benghalensis methanol extract at 4000 mg/kg shows no sign of toxicity, which is a considerable, good margin of safety. Conclusions: The study illustrated the antipyretic, antinociceptive and anti-inflammatory potential of P. benghalensis leaf extract with a safety margin, and validated its traditional use to alleviate fever, pain, and inflammation.

13.
Drug Discov Today ; 22(7): 1008-1016, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28458043

RESUMO

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that can remain dormant for many years before becoming active. One way to control and eliminate TB is the identification and treatment of latent TB, preventing infected individuals from developing active TB and thus eliminating the subsequent spread of the disease. Isocitrate lyase (ICL) is involved in the mycobacterial glyoxylate and methylisocitrate cycles. ICL is important for the growth and survival of M. tuberculosis during latent infection. ICL is not present in humans and is therefore a potential therapeutic target for the development of anti-TB agents. Here, we explore the evidence linking ICL to persistent survival of M. tuberculosis. The structure, mechanism and inhibition of the enzyme is also discussed.


Assuntos
Isocitrato Liase/antagonistas & inibidores , Tuberculose Latente/tratamento farmacológico , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Citratos/metabolismo , Farmacorresistência Bacteriana , Glioxilatos/metabolismo , Humanos , Isocitrato Liase/química , Isocitrato Liase/metabolismo
14.
Medchemcomm ; 8(11): 2155-2163, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108733

RESUMO

The enzymes isocitrate lyase (ICL) isoforms 1 and 2 are essential for Mycobacterium tuberculosis survival within macrophages during latent tuberculosis (TB). As such, ICLs are attractive therapeutic targets for the treatment of tuberculosis. However, there are few biophysical assays that are available for accurate kinetic and inhibition studies of ICL in vitro. Herein we report the development of a combined NMR spectroscopy and thermal shift assay to study ICL inhibitors for both screening and inhibition constant (IC50) measurement. Operating this new assay in tandem with virtual high-throughput screening has led to the discovery of several new ICL1 inhibitors.

15.
PLoS One ; 7(11): e48459, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133635

RESUMO

Rapid in-field diagnosis is very important to prevent the outbreak of various infectious and contagious diseases. Highly sensitive and quantitative detection of diseases can be performed using fluorescent immunochemical assay with specific antigen-antibody binding and a good quality fluorophore. This can lead to the development of a small, portable, quantitative biosensor to transmit diagnostic results to a control center in order to systematically prevent disease outbreaks. In this study, we developed a novel fluorophore, coumarin-derived dendrimer, with high emission intensity, strong signal brightness, and high photostability. It is easily coupled with biomolecules and emits strong and stable fluorescence at 590 nm with excitation at 455 nm. Application to fluorescent immunochromatographic test (FICT) showed that the novel coumarin-derived dendrimer bioconjugate could detect antigens at amount as low as 0.1 ng. The clinical results and the spectral characteristics of the novel coumarin-derived dendrimer open, for the first time, the possibility of developing a cost/energy efficient LED-based portable quantitative biosensor for point-of-care (POC) disease diagnosis, which can permit real time monitoring (U-healthcare system) by a disease control center.


Assuntos
Técnicas Biossensoriais/métodos , Animais , Anticorpos/química , Anticorpos Monoclonais/química , Cromatografia de Afinidade/métodos , Sistemas Computacionais , Cumarínicos/química , Dendrímeros/química , Surtos de Doenças , Ésteres/química , Corantes Fluorescentes/farmacologia , Infecções por HIV/diagnóstico , Hepatite C/diagnóstico , Humanos , Concentração de Íons de Hidrogênio , Luz , Malária/diagnóstico , Malária/parasitologia , Modelos Químicos , Plasmodium vivax/metabolismo , Pontos Quânticos , Espectrofotometria/métodos , Succinimidas/química
16.
Int J Food Sci Nutr ; 61(4): 425-32, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20187713

RESUMO

Fifteen fruits commonly used by the ethnic population in Nepal were studied for the antioxidant activity and total polyphenol content (TPC). Among them, Terminalia bellirica, Terminalia chebula, Phyllanthus emblica and Spondias pinnata were the most potent antioxidants as compared with vitamin C based on the 1,1-diphenyl-2-picryl hydrazyl radical assay. These fruits also contained high TPCs. Spondias pinnata, Pyrularia edulis, Melastoma malabathricum, Cipadema bacifera and Choerospondias axillaries fruits were evaluated for the first time. Moreover, Spondias pinnata was found to be more potent (16% radical scavenging activity at 5 microg/ml) than vitamin C (5% radical scavenging activity at 5 microg/ml). Antioxidant activity showed correlation to TPC with the correlation coefficients (R(2)) as 0.7189 and 0.7246 for the methanol and water extracts, respectively. This study suggests that a number of these fruits may have the potential to confer beneficial health effects due to their antioxidant activity and TPC.


Assuntos
Antioxidantes/farmacologia , Flavonoides/farmacologia , Frutas/química , Magnoliopsida/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Anacardiaceae , Antioxidantes/análise , Ácido Ascórbico , Compostos de Bifenilo , Flavonoides/análise , Sequestradores de Radicais Livres/análise , Sequestradores de Radicais Livres/farmacologia , Nepal , Fenóis/análise , Phyllanthus , Picratos , Extratos Vegetais/química , Polifenóis , Terminalia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...